FreshRSS

๐Ÿ”’
โŒ About FreshRSS
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

Butterfly wings inspire labels for better clothing recycling

A small light shines down on the white fabric.

Labels made with inexpensive photonic fibers could improve clothing recycling, researchers report.

Less than 15% of the 92 million tons of clothing and other textiles discarded annually are recycledโ€”in part because they are so difficult to sort.

โ€œItโ€™s like a barcode thatโ€™s woven directly into the fabric of a garment,โ€ says Max Shtein, a professor of materials science and engineering at the University of Michigan and corresponding author of the study in Advanced Materials Technologies.

โ€œWe can customize the photonic properties of the fibers to make them visible to the naked eye, readable only under near-infrared light or any combination.โ€

Ordinary tags often donโ€™t make it to the end of a garmentโ€™s lifeโ€”they may be cut away or washed until illegible, and tagless information can wear off. Recycling could be more effective if a tag was woven into the fabric, invisible until it needs to be read. This is what the new fiber could do.

Recyclers already use near-infrared sorting systems that identify different materials according to their naturally occurring optical signaturesโ€”the PET plastic in a water bottle, for example, looks different under near-infrared light than the HDPE plastic in a milk jug.

Different fabrics also have different optical signatures, but those signatures are of limited use to recyclers because of the prevalence of blended fabrics, explains lead author Brian Iezzi, a postdoctoral researcher in Shteinโ€™s lab.

โ€œFor a truly circular recycling system to work, itโ€™s important to know the precise composition of a fabricโ€”a cotton recycler doesnโ€™t want to pay for a garment thatโ€™s made of 70% polyester,โ€ Iezzi says. โ€œNatural optical signatures canโ€™t provide that level of precision, but our photonic fibers can.โ€

To develop the technology, the team combined Iezzi and Shteinโ€™s photonic expertiseโ€”usually applied to products like displays, solar cells, and optical filtersโ€”with the advanced textile capabilities at MITโ€™s Lincoln Lab. The lab worked to incorporate the photonic properties into a process that would be compatible with large-scale production.

They accomplished the task by starting with a preformโ€”a plastic feedstock that comprises dozens of alternating layers. In this case, they used acrylic and polycarbonate. While each individual layer is clear, the combination of two materials bends and refracts light to create optical effects that can look like color. Itโ€™s the same basic phenomenon that gives butterfly wings their shimmer.

The preform is heated and then mechanically pulledโ€”a bit like taffyโ€”into a hair-thin strand of fiber. While the manufacturing process method differs from the extrusion technique used to make conventional synthetic fibers like polyester, it can produce the same miles-long strands of fiber. Those strands can then be processed with the same equipment already used by textile makers.

By adjusting the mix of materials and the speed at which the preform is pulled, the researchers tuned the fiber to create the desired optical properties and ensure recyclability. While the photonic fiber is more expensive than traditional textiles, the researchers estimate that it will only result in a small increase in the cost of finished goods.

โ€œThe photonic fibers only need to make up a small percentageโ€”as little as 1% of a finished garment,โ€ Iezzi says. โ€œThat might increase the cost of the finished product by around 25 centsโ€”similar to the cost of those use-and-care tags weโ€™re all familiar with.โ€

In addition to making recycling easier, the photonic labeling could be used to tell consumers where and how goods are made, and even to verify the authenticity of brand-name products, Shtein says. It could be a way to add important value for customers.

โ€œAs electronic devices like cell phones become more sophisticated, they could potentially have the ability to read this kind of photonic labeling,โ€ Shtein says. โ€œSo I could imagine a future where woven-in labels are a useful feature for consumers as well as recyclers.โ€

The team has applied for patent protection and is evaluating ways to move forward with the commercialization of the technology.

The National Science Foundation and the Under Secretary of Defense for Research and Engineering funded the work.

Source: University of Michigan

The post Butterfly wings inspire labels for better clothing recycling appeared first on Futurity.

โŒ